Parallel Tree Reduction on MapReduce

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Tree Reduction on MapReduce

MapReduce, the de facto standard for large scale data-intensive applications, is a remarkable parallel programming model, allowing for easy parallelization of data intensive computations over many machines in a cloud. As huge tree data such as XML has achieved the status of the de facto standard for representing structured information, the situation calls for efficient MapReduce programs treati...

متن کامل

PDTSSE: A Scalable Parallel Decision Tree Algorithm Based on MapReduce

Parallel decision tree learning is an effective and efficient approach to scaling the decision tree to large data mining application. Aiming at large scale decision tree learning, we present a novel parallel decision tree learning algorithm in MapReduce framework, called PDTSSE (Parallel Decision Tree via Sampling Splitting points with Estimation). We first propose an estimation method for samp...

متن کامل

Parallel attribute reduction algorithms using MapReduce

Article history: Received 17 September 2012 Received in revised form 31 March 2014 Accepted 8 April 2014 Available online xxxx

متن کامل

PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce

Classification and regression tree learning on massive datasets is a common data mining task at Google, yet many state of the art tree learning algorithms require training data to reside in memory on a single machine. While more scalable implementations of tree learning have been proposed, they typically require specialized parallel computing architectures. In contrast, the majority of Google’s...

متن کامل

Study on Parallel SVM Based on MapReduce

Support Vector Machines (SVM) are powerful classification and regression tools. They have been widely studied by many scholars and applied in many kinds of practical fields. But their compute and storage requirements increase rapidly with the number of training vectors, putting many problems of practical interest out of their reach. For applying SVM to large scale data mining, parallel SVM are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2012

ISSN: 1877-0509

DOI: 10.1016/j.procs.2012.04.201